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Abstract

In this work, we discuss the problem of a particle with a position-dependent
mass interacting with a two-dimensional potential well with finite depth, as well
as under the influence of a uniform magnetic field. The ordering ambiguity
is taken in account, and we obtain the exact wavefunctions and energies for a
complete set of eigenstates. It is shown that, even considering a finite-depth
potential well, the system retains an infinite set of quantum states.

PACS numbers: 03.65.Ge, 03.65.−w

(Some figures in this article are in colour only in the electronic version)

1. Introduction

After the advent of the modern fabrication of nano-devices such as quantum dots, wires and
wells, a naturally renewed interest in the exact solution of two-dimensional confined systems
has appeared [1]. One of the possible ways used to try to keep exact solvability on this
track is to consider the usual exactly solvable potentials under infinite quantum wells, or,
in other words, considering those problems under convenient Dirichlet boundary conditions
[2, 3]. Furthermore, in order to take into account the spatial variation of the semiconductor
type, some effective Hamiltonians proposed include a spatially dependent mass for the carrier
[4–10]. As an important consequence, in general, this kind of system becomes ambiguous at
the quantum level. However, the problem of ordering ambiguity is one of the long-standing
unsolved questions of quantum mechanics. This matter has attracted the attention of some
of the founders of quantum mechanics. Born and Jordan, Weyl, Dirac and von Newmann
worked on this problem, as can be verified from the excellent review by Shewell [11]. This
is a hard problem which has advanced very few along the last decades. Notwithstanding,
as a consequence of its importance for the modeling of some experimental situations like
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impurities in crystals [12–14], the dependence of nuclear forces on the relative velocity of
the two nucleons [15, 16] and, more recently, the study of semiconductor heterostructures
[17, 18], the interest in such kind of systems never vanished. Some time ago, it was discussed
the exact solvability of some classes of one-dimensional Hamiltonians with ordering ambiguity
[19] and, after that, a dependence of the ordering ambiguity with the representation chosen
to study it [21]. In fact, the study of systems with spatially dependent mass is presenting a
growing interest along the last few years [19–46]. However, as far as we know, the majority
part of the works dedicated to this research, deals with one-dimensional systems. Although,
there are physical systems like those where a magnetic field [48–51] is present, which lead
naturally to the necessity of a two-dimensional analysis. In this work, we intend to partially
fill this gap.

Here, we will address the position-dependent mass (PDM) type of systems in two spatial
dimensions by using Cartesian coordinates. We will introduce a very interesting system
which, as we are going to see below in the manuscript, is able to confine an arbitrary number
of particles in a finite-size deep well. Furthermore, we will also implement the interaction of
the particles confined in that mentioned potential with an uniform magnetic field.

2. Effective Schrödinger equation in two-dimensional Cartesian coordinates

In this section, we discuss the case of a system with a two-dimensional PDM under the influence
of a potential of a smooth and finite-depth well. The exact solution of the corresponding
Schrödinger equation is obtained, and the SU(2) coherent states are constructed. The problem
of ordering ambiguity is taken into account and, as a consequence, we need to choose a
particular ordering or, equivalently, the form of the potential in order to get the mentioned
exact solution.

First of all, we begin by using the ordering defined by von Roos [8, 19]. Besides, for the
Hamiltonian operator, which in one-dimensional space is written as

Ĥ = 1
4 (Mαp̂Mβp̂Mγ + Mγ p̂Mβp̂Mα) + V (x), (1)

where p̂ is the momentum operator and M = M(x) is the position-dependent effective mass.
α, β and γ are arbitrary ordering parameters which must obey the relation

α + β + γ = −1, (2)

in order to grant the correct classical limit.
Now, by using the canonical commutation relations, and putting the momentum operators

at the right-hand side, one gets the following effective Hamiltonian operator:

Mγ p̂Mβp̂Mα = p̂2

M
− ih̄(β + 2α)

M ′

M2
p̂ − h̄2α(β + α − 1)

(M ′)2

M3
− h̄2α

M ′′

M2
. (3)

By using the relation α + β + γ = −1, we eliminate the parameter β = −(α + γ + 1), and
arrive at the following effective Hamiltonian operator [19]:

H = 1

2M
p̂2 +

ih̄

2

M ′

M2
p̂ + U(α, γ, x) + V (x). (4)

The effective potential U(α, γ, x) is, then, written as

U(α, γ, x) = − h̄2

4M3

[
(α + γ )M

(
∂2M

∂x2

)
− 2(α + γ + αγ )

(
∂M

∂x

)2
]

. (5)

In this case, the corresponding differential equation can be written as

− h̄2

2M(x)

d2x

dx2
+

h̄2

2

[
dM/dx

M2

]
dψ

dx
+ [V (x) + U(α, γ, x) − E] ψ = 0. (6)
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Now, we can extend the above calculations for the case of a set of two-dimensional
Cartesian coordinates, where we deal with a mass like M = M(x, y). In that case, one can
obtain the following expression for the effective Hamiltonian operator:

H = 1

2M
(p̂2

x + p̂2
y) +

ih̄

2

(
∂M
∂x

p̂x + ∂M
∂y

p̂y

M2

)
+ U(α, γ, x, y) + V (x, y), (7)

where V (x, y) is the original potential of the system, and U(α, γ, x, y) is the effective one,
which can be expressed as

U(α, γ, x, y) = − h̄2

4M

{
(α + γ )

Mxx + Myy

M
− 2(α + γ + αγ )

[(
Mx

M

)2

+

(
My

M

)2
]}

, (8)

with Mx ≡ ∂M
∂x

and My ≡ ∂M
∂y

. Thus, the corresponding effective operator can be rewritten as
follows:

H = 1

2M
−→p 2 +

ih̄

2

1

M2

−→∇ M · −→p + U(α, γ, x, y) + V (x, y), (9)

where

U(α, γ, x, y) ≡ − h̄2

4M

⎡
⎣(α + γ )

∇2M

M
− 2(α + γ + αγ )

(−→∇ M

M

)2
⎤
⎦ . (10)

Have we started with a typical Schrödinger equation

− h̄2

2M(x, y)
∇2χ + Veff(x, y)χ = Eχ, (11)

and performed the substitution

χ(x, y) = eσ(x,y)ψ(x, y), (12)

we would obtain the following transformed equation:

− h̄2

2M(x, y)
∇2ψ − h̄2

M(x, y)
[(

−→∇ σ) · −→∇ ψ]

+

{
V (x, y) − h̄2

2M(x, y)
[∇2σ + (

−→∇ σ)2]

}
ψ = Eψ, (13)

which corresponds to a Hamiltonian operator given by

H = 1

2M(x, y)
−→p 2 − h̄2

M(x, y)

i

h̄
(
−→∇ σ) · −→p + V − h̄2

2M(x, y)
[∇2σ + (

−→∇ σ)2]. (14)

Now, requiring that this last Hamiltonian matches with the one appearing in equation (9),
we get the following condition:

− h̄2

M

i

h̄

−→∇ σ · −→p = ih̄

2

1

M2

−→∇ M · −→p , (15)

whose solution is given by

σ = ln
(
M− 1

2
)
. (16)

Thus, one finishes finally with

H = 1

2M
−→p 2 +

ih̄

2M

−→∇ M

M
· −→p +

⎧⎨
⎩V − h̄2

4M

⎡
⎣3

2

(−→∇ M

M

)2

− ∇2M

M

⎤
⎦
⎫⎬
⎭ , (17)

3
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and the wavefunction is re-scaled as

ψ = M
1
2 χ. (18)

Thus, we can conclude that, starting from the effective Hamiltonian (7), one can reach to the
effective Schrödinger equation presented in equation (11), where the effective potential is

Veff(x, y) = V (x, y) +
h̄2

4M

⎡
⎣2

(
α + γ + αγ +

3

4

)(−→∇ M

M

)2

− (α + γ + 1)
∇2M

M

⎤
⎦ . (19)

At this point a comment about the ordering ambiguity is in order. Comparing the above
result with some other in the literature [5, 23, 37, 40] for the one-dimensional case, one can
verify that, apart from the fact that those authors eliminate the parameter γ instead of β by
using the equation (2), and that they work with h̄ = 2 m0 = 1, there is a difference in the

effective potential. This is due to the presence of the terms h̄2

4M

[
2
(

3
4

)(−→∇ M
M

)2 − ∇2M
M

]
. This

happens because, here we work with a kinetic term like 1
M

∇2, instead of �∇ ( 1
M

) �∇ which
is used by the quoted works. So, there is no contradiction between this result with the one
obtained in those references.

In order to work with an equivalent system with constant mass, we can write
equation (11) as

−h̄2

2
∇2χ + Ueffχ = ξχ, (20)

where

Ueff − ξ = M(x, y)V (x, y) +
h̄2

4

[
2

(
α + γ + αγ +

3

4

)(−→∇ M

M

)2

− (α + γ + 1)
∇2M

M

]
− EM(x, y), (21)

with ξ constant.
Let us now analyze an example which can be exactly solved. Having the exact solvability

in mind, we choose to work in this example with a case where one deals with a harmonically
increasing mass like

M(x, y) = M0

[
1 +

g

2
(x2 + y2)

]
, (22)

leading us to

Ueff − ξ = M0

[
1 +

g

2
(x2 + y2)

]
V (x, y) − EM0

[
1 +

g

2
(x2 + y2)

]

+
h̄2

4

{
2

(
α + γ + αγ +

3

4

)
g2

M2
0

[
x2 + y2

1 + g

2 (x2 + y2)

]

− (α + γ + 1)
2g

M0
[
1 + g

2 (x2 + y2)
]
}

. (23)

In fact, in order to guarantee that the example is exactly solvable, one should choose an
ordering dependent potential or, more easily, restrict the study to the case with the following
ordering:

α + γ + 1 = 0, α + γ + αγ + 3
4 = 0, (24)

4
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Figure 1. V (x, y) = ω2x2+ω2y2

2
[
1+ g

2 (x2+y2)
] with ω = 1 and g = 1.

whose solution is given by

α = − 1
2 , γ = − 1

2 , β = 0, (25)

in such a way that we arrive at an ordering where
−→p 2

2M
= 1

2

(
1√
M

−→p
)

·
(

−→p 1√
M

)
= 1

2

1√
M

(−→p )2 1√
M

. (26)

In this case, we can write a much simpler effective potential

Ueff − ξ = M0

[
1 +

g

2
(x2 + y2)

]
V (x, y) − EM0 − EM0g

2
(x2 + y2). (27)

However, the example will be complete only when we have defined the potential under
which the PDM particle is moving. Here we choose an anisotropic one, representing a kind
of finite-depth well, as can be seen from figure 1 in the isotropic situation (ω = 1 and g = 1).
In general we have

V (x, y) = ω2
1x

2 + ω2
2y

2

2
[
1 + g

2 (x2 + y2)
] , (28)

which lead us to

Ueff − ξ = 1

2
M0
(
ω2

1x
2 + ω2

2y
2)− EM0 − EM0

2
g(x2 + y2)

= 1

2
M0
[(

ω2
1 − Eg

)
x2 +
(
ω2

2 − Eg
)
y2]− EM0, (29)

then, if we define ξ ≡ EM0, we get for the energy spectrum the relation

EM0 = h̄

√(
ω2

1 − Eg
)
M0
(
n + 1

2

)
+ h̄

√(
ω2

2 − Eg
)
M0
(
m + 1

2

)
, (30)

where n,m = 0, 1, 2, . . . , and we must impose that Eg < ω2
1 and Eg < ω2

2, in order to
keep the energy spectrum real and the wavefunctions normalizable. The analytical expression
for the energy spectrum in this case is rather cumbersome. However, the numerical solution
can be easily done and we present an example of this case in figure 2. There, we plotted the
value of the energy levels as a function of the quantum number n, with m = 0, . . . , 5, for the
case where ω2 = 2ω1 and ω1 = 10. Note that, as the quantum number increases, the energy

5
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Figure 2. Typical energy behavior for increasing quantum number n. Here, ω2 = 2ω1, ω1 = 10,

g = M0 = h̄ = 1 and m = 0, 1, 2, 3, 4, 5 (the points become thicker as m is increasing).

eigenvalue approaches a limit value. Furthermore, one can observe that there is a limit in
the quantum number associated with the higher frequency (ω2 in this example). In fact, one

can verify that, since the energy goes asymptotically in n to ω2
1

g
, this maximum value of the

quantum number m is given by

mmax = Int

⎡
⎣ M0ω

2
1

h̄g

√
M0
(
ω2

2 − ω2
1

)
⎤
⎦ , (31)

where Int [·] stands for the integer part of the quantity inside the square brackets (mmax = 5 in
this example). This can be understood because the effective oscillator frequencies depend on
the energy, and after this maximum quantum number, the frequency would become imaginary,
rendering a non-normalizable wavefunction. Moreover, when the frequencies become equal in
the isotropic limit, both quantum numbers are unlimited and the system, as expected, presents
a degeneracy. This can be noted also from the fact that, when E → ω2/g, the term

√
ω2 − Eg

becomes asymptotically small, so that the quantum number can increase arbitrarily, in such
a way that the product

√
ω2 − Eg (n + 1/2) stays limited as required. This behavior will be

confirmed analytically below, when we will be concerned with the isotropic case.
In this last part of the section, we are going to construct SU(2) coherent states, as studied

by Chen et al [52, 53]. Now we restrict ourselves to the isotropic case where ω1 = ω2 = ω.
In that case, the energy spectrum must obey the following simpler equation:

M0E
2 + QnmgE − Qnmω2 = 0, (32)

where Qnm = h̄2(n + m + 1)2. Then, we obtain finally that

Enm = 1

2M0

(−Qnmg +
√

Q2
nmg2 + 4M0ω2Qnm

)
. (33)

Analyzing this energy spectrum, one can observe that there are infinitely many allowed
bound states, showing that the quadratically growing mass, conspires to permit that a finite-
depth well becomes able to sustain an arbitrarily high number of quantum bound states, which
is usually incompatible with this kind of potential in the constant mass case. This can be
verified by noting that the limit when the quantum number goes to infinity is

lim
N→∞

EN → ω2

g
, (34)

6
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where N ≡ n + m. This limit is precisely the depth of the potential which is under analysis.
Thus, we conclude that an infinite set of quantum states is allowed in this arrangement.

Finally, we finish this section by constructing the so-called SU(2) coherent states [52, 53],
since they present a very interesting feature. Those states usually have the highest probability
of finding the particles precisely over the classical trajectory. Besides, these are stationary
states, as well as the usual eigenfunctions for the harmonic oscillators. Then, we decided
to present them here, instead of the usual eigenfunctions. In fact, as we are going to see,
these states lead to the conclusion that a behavior which is very similar to that of the usual
two-dimensional harmonic oscillator takes place, and the line where the probability reach its
maximum is a circle also in the present situation. This is a nontrivial feature, because similar
constructions performed in the case of the Wigner distribution of one-dimensional PDM
systems, presented a different behavior when compared to the original harmonic oscillator
distribution [54]. The SU(2) coherent states can be written by using the definition [52, 53]

�(x, y, τ ) = 1

(1 + |τ |2) L
2

L∑
K=0

(
L

K

)1/2

τKψnm(x, y), (35)

with K = 0, 1, 2, . . . , L and p and q are integer numbers. The complex parameter τ = A eiφ ,
where φ = π

2 , written in terms of polar coordinates is used to make the connection with
the classical trajectory. It can be observed in equation (35) that the SU(2) coherent state is
a superposition of the degenerate energy states. Because the energy eigenfunctions can be
obtained from equation (18), one gets

ψnm(x, y)= 1√
2(m+n+1)πn!m!

M(x, y)1/2

√
R2

Hm

(√
2x

R

)
Hn

(√
2y

R

)
exp

[
−
( x
R

)2
−
( y
R

)2]
,

(36)

where R =
√

2h̄/(M0

√
(ω2 − Eg)M0).

Figure 3 shows the probability density for the case where L = 20 and p = q = 1, as the
one used by Chen and Huang in [52]. There, it was used h̄ = M0 = A = ω = g = 1, and
the energy is always lesser than the frequency in equation (30). The right-hand side plot in
figure 3 is just a projection of the left-hand one.

3. PDM in a magnetic field

In this section, we will analyze the effect of a uniform magnetic field over the behavior of a
charged PDM particle bounded by the potential introduced in the previous section. For this, we
begin by doing a discussion about this problem in general, then we consider the particular case
of the uniform magnetic field in a Coulomb gauge. In this situation, the classical Hamiltonian
is given by

H = 1

2M(x, y)
(−→p − e

−→
A )2 + V (x, y)

= 1

2M
−→p 2 − e

2M
(
−→
A · −→p + −→p · −→

A ) +
e2

2M

−→
A 2 + V (x, y), (37)

where e is the electric charge and
−→
A (x, y) is the vector potential. Defining

−→̃
A ≡

−→
A

M
, (38)

7
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Figure 3. Probability density when ω = 1.

we get the following classical interaction Hamiltonian:

H = 1

2M
−→p 2 − e

2
(
−→̃
A · −→p + −→p · −→̃

A ) +
e2

2
M

−→̃
A 2 + V (x, y). (39)

In the previous section, we discussed the ordering of the quantum operator which
corresponds to the kinematical term in the Hamiltonian (39). Thus, we already know its
expression, which shall be the same even when we take into account the electromagnetic
interaction. However, we need to take into account the ordering of the operator linear in −→p ,
which is such that

−→̃
A · −→p = Ãxpx + Ãypy, (40)

thus, it is decoupled into two one-dimensional operators of the type f (x)px . Now, by using
the analysis of this term, as done in [19, 21], one can see that the ordering of a one-dimensional
term like

Ô = 1
2 [f (x)αp̂f (x)β + f (x)βp̂f (x)α] (41)

can be done by using the commutation relation between the momentum and the spatial variable
in (41). One shall also use the constraint among the ordering parameters α + β = 1, such that
one arrives at the following expression:

Ô = f (x)p̂ − ih̄

2

df (x)

dx
. (42)

Thus, we can see that, in the two-dimensional Cartesian coordinates, the ordering for the
operator which is linear in −→p in equation (39), acquires the form

Ô = 1
2

(
Ãα

x p̂xÃ
β
x + Ãα

y p̂yÃ
β
y + Ãβ

x p̂xÃ
α
x + Ãβ

y p̂yÃ
α
y

)
, (43)

and we finish with

Ô = h̄

i

−→̃
A · −→∇ − ih̄

2
−→∇ · −→̃

A . (44)

Now, substituting equation (38) in the above equation, one is lead to

Ô = h̄

i

−→
A

M
· −→∇ − ih̄

2M

−→∇ · −→
A +

ih̄

2M2

−→∇ M · −→
A . (45)

8
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Here, we choose to work with the Coulomb gauge:
−→∇ · −→

A = 0. So, we are left simply with

Ô = h̄

i

−→
A

M
· −→∇ +

ih̄

2M2

−→∇ M · −→
A . (46)

Let us suppose now that we have a uniform magnetic field in the z-direction,
−→
B = B0ẑ.

It can be obtained when use is made of the vector potential in the so-called symmetric gauge
form, where

−→
A = B0

2
(−yî + xĵ ), (47)

and

−→∇ M · −→
A = ∂M

∂x
Ax +

∂M

∂y
Ay = B0

2

(
∂M

∂x
(−y) +

∂M

∂y
x

)
. (48)

Here, we will work with the case where the mass presents the same spatial dependence which
we studied in the last section,

M(x, y) = M0

[
1 +

g

2
(x2 + y2)

]
, (49)

and this implies that (
−→∇ M) · −→

A = M0[−y(gx) + x(gy)] = 0. Then, we have

Ô = h̄

i

−→
A

M
· −→∇ = − ih̄B0

M
(x∂y − y∂x).

Let us now see what is the effect of this operator when it is applied into a function like (M1/2χ).
Then we get

(x∂y − y∂x)(M
1/2χ) = xMy − yMx

2M1/2
χ + M1/2(x∂y − y∂x)χ = M1/2(x∂y − y∂x)χ.

This allow us to conclude that, starting from the classical Hamiltonian (37), and using the
PDM we have chosen to work with here, one is left with the following effective Schrödinger
equation:

− h̄2

2M(x, y)
∇2ψ +

h̄2

2M(x, y)2
[
−→∇ M(x, y)] · −→∇ ψ + Veff(α, γ, x, y)ψ

+
ih̄B0

M(x, y)
(x∂y − y∂x)ψ +

e2B2
0 (x2 + y2)

8M(x, y)
ψ = Eψ, (50)

and by using the relation (18) we finish with

− h̄2

2M(x, y)
∇2χ +

ih̄B0e

2M(x, y)
(x∂y − y∂x)χ + Veff(α, γ, x, y)χ = Eχ, (51)

or, equivalently, with the constant mass effective Schrödinger equation

−h̄2

2
∇2χ +

ih̄B0e

2
(x∂y − y∂x)χ + Ueff(α, γ, x, y)χ = ξχ, (52)

where the effective potential is defined in such a way that one has

Ueff − ξ = V (x, y)M(x, y) +
h̄2

4

[
2

(
α + γ + αγ +

3

4

)(−→∇ M

M

)2

− (α + γ + 1)
∇2M

M

]
+

e2B2
0

8
(x2 + y2) − EM(x, y). (53)
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Now, aiming to work with an exactly solvable case, besides to choose the special form
for the PDM which appears in (49), we use the very same ordering used in the case without
magnetic interaction α = − 1

2 , γ = − 1
2 and β = 0. In this context, we have

Ueff − ξ = M0

[
1 +

g

2
(x2 + y2)

]
V (x, y) − EM0 − EM0g

2
(x2 + y2) +

e2B2
0

8
(x2 + y2). (54)

We could choose the anisotropic potential like the one appearing in equation (28) but,
since we are working with the symmetric gauge, and we want exact solutions, we shall restrict
ourselves to the isotropic case, where

Ueff = 1

2
M0

(
ω2 − Eg +

e2B2
0

4M0

)
(x2 + y2), ξ = EM0, (55)

and we can write the above differential equation as

− h̄2

2M0
∇2χ +

ih̄B0e

2M0
(x∂y − y∂x)χ +

1

M0
Ueffχ = Eχ. (56)

At this point, two alternative routes can be followed in order to get the exact solutions. One
can work in polar coordinates, or remain in Cartesian ones and perform some time-dependent
rotation transformations [49]. Here, we decided to take this second route and, in order to
implement it, we begin by noting that, using σ = e−(i/h̄)Etχ(x, y), we can work with the
corresponding time-dependent Schrödinger equation,

− h̄2

2M0
∇2σ +

ih̄B0e

2M0
(x∂y − y∂x)σ +

1

M0
Ueffσ = ih̄

∂σ

∂t
. (57)

Then, as we asserted, there is a procedure which can be used in order to decouple
equation (57) via variables transformations [49]. It consists in writing a time-dependent
rotation matrix like(

x1

y1

)
=
(

cos α(t) sin α(t)

−sin α(t) cos α(t)

)(
x

y

)
, (58)

where t = T . As a consequence, the momentum operators become

px = −h̄

i

∂

∂x
= h̄

i

(
cos α(t)

∂

∂x1
− sin α(t)

∂

∂y1

)
,

py = −h̄

i

∂

∂y
= h̄

i

(
sin α(t)

∂

∂x1
+ cos α(t)

∂

∂y1

)
.

Thus, both the quadratic sum of the spatial coordinates as the momenta, are covariant
under these transformations. Furthermore, it can be verified that

x
∂

∂y
− y

∂

∂x
= x1

∂

∂y1
− y1

∂

∂x1
, (59)

so that, it is also covariant. Since we are dealing with a time-dependent rotation, we still have
to remember that

∂

∂t
= ∂

∂T
+ α̇

(
y1

∂

∂x1
− x1

∂

∂y1

)
= ∂

∂T
− α̇

(
x1

∂

∂y1
− y1

∂

∂x1

)
. (60)
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Performing the above-described transformations in equation (57), one is left with

− h̄2

2M0
∇2σ +

ih̄B0e

2M0

(
x1

∂

∂y1
− y1

∂

∂x1

)
σ + Ueffσ = ih̄

∂σ

∂T
− ih̄α̇

(
x1

∂

∂y1
− y1

∂

∂x1

)
σ.

(61)

Now, defining α(t) such that the crossed term in the variables vanishes, we get

α̇ = − eB0

2M0
, α(T ) = − eB0

2M0
T + c, (62)

where c is an integration constant. Hence, we finish with the equation of a two-dimensional
isotropic harmonic oscillator,

− h̄2

2M0
∇2σ + Ueffσ = ih̄

∂σ

∂T
. (63)

So, the energy spectrum of the model is written as

EM0 = h̄
√

(�2 − Eg)M0(n + m + 1), (64)

with �2 ≡ ω2 + e2B0
4M0

, and we must impose that Eg < �2 in order to keep the energy spectrum
real. In this case, as one can see, the system will obey equation (33) with ω replaced by
�. Thus, one can verify that the case with constant mass is obtained when one takes the
limit where g = 0, recovering the expected spectrum of the harmonic oscillator in an uniform
magnetic.

Finally, we perform the usual separation of variables where

σ(x1, y1, T ) = exp
(
− i

h̄
ET
)

χ(x1, y1), (65)

and ends up with an equation for the stationary states given by

− h̄2

2M0
∇2χ + Ueffχ = Eχ, (66)

where χ = χ(x1, y1). Allowing us to write the wavefunctions, which will have the
form appearing in equation (36), with the coordinates changed through the above-defined
transformation.

4. Final comments

In this work, we presented a general construction of a class of two-dimensional PDM systems in
Cartesian coordinates, analyzing an exactly solvable case and discussing its ordering ambiguity
and some of their properties. In particular, we constructed its SU(2) coherent state, verifying
that it corresponds to a stationary state where the highest probability stays over a circle. Then,
we included the interaction with a static magnetic field in the Coulomb gauge and, finally,
particularized it to a uniform field in the symmetric gauge, in order to work with an exactly
solvable problem. One interesting feature of this system is that the PDM system retains
an infinite set of quantum states for a finite-depth bounding potential, which usually do not
happens in the case of the constant mass systems.
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